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ABSTRACT- This work proposes a vision-based 

approach to real-time sign language translation for Indian 

Sign Language (ISL). The system uses state-of-the-art deep 

learning architectures such as CNN (Convolutional Neural 

Networks), LSTM (Long Short-Term Memory) networks, 

and Transformer-based encoder-decoder models for gesture 

recognition in both isolated and continuous forms. Data 

preprocessing techniques such as DTW (Dynamic Time 

Warping) were applied to augment and normalize gesture 

sequences from custom ISL and public ASL datasets. The 
model performance was quantitatively evaluated using 

precision, recall, F1-score, BLEU, ROUGE, CER(character 

error rate) and WER (word error rate). 

A Transformer-based model outperformed the achieving a 

BLEU score of 0.74 and a classification accuracy of 96.1%. 

The developed desktop application enables real-time ISL-

to-English translation at 18 FPS without requiring external 

sensors, while ablation studies validate the benefits of 

multimodal fusion and pose-language alignment. This work 

demonstrates a robust, scalable approach to non-intrusive 

sign language translation, advancing accessibility for the 

DHH community. 

KEYWORDS-Transformer-based Encoder-Decoder, 

Spatiotemporal Gesture Modeling, Indian Sign Language 

(ISL), Convolutional Neural Networks (CNN), Long Short-

Term Memory (LSTM), Dynamic Time Warping (DTW), 

Real-time Sign Language Translation. 

I. INTRODUCTION 

Communication is an essential aspect of human life, yet 

millions of people who are hard of hearing or deaf 

experience significant challenges in this area around the 

world continue to experience barriers due to the limited 

adoption and understanding of sign languages in 

mainstream society [5], [12]. Sign languages, being natural 

and visually rich, vary significantly across regions, with no 

universal standard, making the creation of a robust 

translation system both necessary and challenging [6], [21], 

[28]. Despite being linguistically complete, sign languages 

remain underrepresented in technological solutions for 
accessible communication. 

Recent advances in artificial intelligence (AI), computer 

vision, and deep learning have made the doors open for real- 

time sign language recognition and interpretation Vision-
based techniques based on convolutional neural networks 

(CNNs), recurrent neural networks (RNNs), long short-

term memory (LSTM) models, and transformer-based 

architectures have achieved high accuracy in gesture 

classification and sequence learning [14], [22], [30], [38]. 

These models allow systems to learn the spatial-

temporal patterns of hand movements and facial 

expressions are important in guaranteeing correct sign 

interpretation. 

This research focuses on a vision-based AI model for sign 

language translation, particularly emphasizing Indian and 
American Sign Languages, without reliance on wearable 

sensors or external hardware [9], [16], [29]. The aim is to 

provide a non-intrusive, real-time system that captures 

visual inputs via standard cameras, extracts relevant 

features, classifies them into sign tokens, and then translates 

these into meaningful text or speech. 

Furthermore, this paper addresses the social exclusion faced 

by the deaf community due to linguistic isolation and 

evaluates how AI systems can contribute to bridging this 

gap. The methodology involves camera-based image 

acquisition, pre-processing for background removal and 

contrast enhancement, feature extraction using CNNs, 
classification through hybrid models like CNN-SVM, and 

natural language generation via encoder-decoder models 

[13], [26], [31], [40]. It considers the non-manual markers 

like mouth patterns and facial expressions in enhancing 

translation accuracy. 

By leveraging publicly available datasets and applying 

state-of-the-art AI models, this work proposes a scalable 

solution to reduce communication barriers and increase 

inclusivity for individuals with hearing and speech 

impairments. 

II.  BACKGROUND 

Sign languages are fully-fledged natural languages that 

have evolved independently of spoken languages and 

exhibit all essential linguistic features such as grammar, 

morphology, and syntax [6], [21]. In contrast to spoken 

languages, sign languages adopt a visual-gestural 

modality, and meaning is drawn from hand shapes, 

movement, orientation, facial expression, and body 
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posture [28], [33]. There are more than 200 identified sign 

languages today, each formed by its geographical, cultural, 
and social backgrounds [25], [39]. 

Indian Sign Language (ISL), the primary focus of this 

study, has developed organically across various regions of 

India and remains under-documented compared to British 

Sign Language (BSL) or American Sign Language (ASL) 

[18], [26], [41]. ISL does not follow the grammatical 

structure of spoken Indian languages; instead, it has its own 

rules, sentence structures, and lexicons [31], [42]. However, 

due to the lack of official recognition and limited 

integration into educational and governmental institutions 

until recently, many ISL users face significant barriers to 

communication and accessibility [27], [34]. 
The structure of a typical sign includes five essential 

components: movement, handshape, orientation, location 

and non-manual features like eye gaze and facial 

expressions [33], [36]. Variations in any of these 

components can shift the sense of a sign, making sign 

recognition a complex, high-dimensional problem [8], [37]. 

Non-manual cues are especially critical for conveying 

grammatical aspects such as negation, interrogation, or 

emotion [7], [24]. 

Studies have emphasized that sign languages are not 

mutually intelligible even among those using the same 
alphabet system due to differences in vocabulary, syntax, 

and cultural usage [19]. For instance, ASL and BSL are 

markedly different in grammar and lexicon, despite being 

used in English-speaking countries [6]. Moreover, 

fingerspelling, a method for spelling out words using hand 

gestures for each letter, is used variably across different sign 

languages and further complicates translation systems [13], 

[32]. 

The digital documentation of ISL has gained momentum 

recently, aided by initiatives from the Indian government 

and linguistic researchers, leading to the creation of ISL 
dictionaries and video corpora [27]. However, compared to 

ASL datasets, ISL resources remain limited in both size and 

diversity, posing a challenge for training robust AI models 

[20], [35]. 

Therefore, an accurate understanding of the linguistic, 

cultural, and structural features of sign languages is crucial 

for the creation of efficient sign language translation 

systems. This background provides the foundational 

knowledge needed to approach the computational 

challenges addressed in subsequent sections. 

 

 
 

 

 

 

 

III.  ADVANCEMENTS IN ARTIFICIAL 

INTELLIGENCE FOR VISION-BASED SIGN 

LANGUAGE TRANSLATION: 

Artificial Intelligence (AI) represents the simulation of 

human cognitive functions through computational systems 

capable of learning, reasoning, and adapting autonomously. 
In recent years, AI has significantly impacted fields such as 

speech recognition, natural language processing, and 

particularly computer vision technologies that form the 

backbone of modern sign language translation systems. 

Within this domain, AI facilitates the interpretation of 

complex visual gestures through the integration of deep 

learning (DL), machine learning (ML), and advanced 

vision-based techniques. These methods enable the 

extraction of temporal and spatial and features from 

gesture-based inputs, allowing the translation of sign 

language into textual or spoken language forms 

with growing accuracy and fluency [1], [5], [17]. 
Initially, traditional machine learning algorithms such as 

Hidden Markov Models (HMM) and Support Vector 

Machines (SVM) were employed for isolated sign 

recognition tasks. While effective in controlled 

environments, these methods exhibited limitations when 

dealing with continuous signing due to issues like gesture 

overlap, co-articulation, and contextual dependency 

inherent in sign languages [8], [11]. Recent advancements 

have shifted focus toward deep learning models namely 

Convolutional Neural Networks (CNNs) for spatial feature 

extraction and temporal models such as Recurrent Neural 
Networks (RNNs), Long Short-Term Memory (LSTM) 

units, and Transformer-based architectures for dynamic 

gesture sequences [2], [9], [16], [43]. Moreover, the rise of 

multi-modal learning, which integrates video data with 

skeletal and facial cues, has improved recognition 

robustness. Architectures such as the Transformer and T5 

have demonstrated efficacy in translating signs into natural 

language using encoder-decoder mechanisms [14], [15]. To 

support real-time use cases, lightweight frameworks like 

TensorFlow Lite and ONNX have enabled the deployment 

of efficient AI models on mobile and embedded platforms, 

increasing accessibility for the deaf and hard-of-hearing 
population [4], [10]. Nevertheless, the effectiveness of such 

systems continues to be largely subject to the variety and 

quality of training data sets, as well as capacity to learn 

cultural and grammatical variations of different sign 

languages. In the below figure 1, it is showing Deep 

artificial neural network framework for sign language 

translation. Input methods include recorded video, real-time 

video feed, and raw image data. The CNN extracts spatial 

features, LSTM captures gesture dynamics, and 

Transformer handles sequence learning. Output methods 

provide real-time text translation, speech output, and visual 
feedback with sign overlays. 
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Figure 1: Deep artificial neural network framework for sign language translation. 

IV. CHALLENGES IN SIGN LANGUAGE 

TRANSLATION 

Sign language is a required medium of communication for 

millions of deaf and hard-of-hearing individuals worldwide. 

Despite this, several challenges limit automatic sign 
language translation ages into oral or written modes. These 

challenges span linguistic diversity, gestural complexity, 

technological limitations, and socio-cultural issues, each 

requiring significant attention to ensure the development of 

effective and inclusive translation systems. 

A.  Linguistic and Modal Variability: 

Sign languages are not universal, with over 200 distinct 

systems worldwide, each possessing unique vocabulary, 

grammar, and syntax. For example, British Sign Language 

(BSL) differs significantly from American Sign Language 

(ASL) , despite both being used in English-speaking 

regions. This linguistic variability poses a challenge for AI 

models, which often struggle to generalize across different 

sign languages due to limited multilingual datasets [6], [27]. 

Existing models face difficulties in translating between 

diverse sign languages effectively. 

B. Non-Manual Features and 3D Spatial Dynamics: 

In sign language, both non-manual (head movements, body 

posture, and facial expressions) and manual (hand gestures) 

components contribute to the message. Accurately 

capturing and interpreting these features using computer 

vision is challenging due to issues such as occlusion, low-

resolution imaging, and variations in signer styles. 
Additionally, sign language is expressed in three-

dimensional space, while most AI models process two-

dimensional input, complicating accurate gesture 

recognition [7], [31], [40]. 

C. Data Scarcity and Dataset Diversity: 

AI models for sign language translation rely on large, 
diverse, and annotated datasets. However, publicly  

 

available sign language datasets are often limited in size, 

biased toward specific sign languages (e.g., ASL), and 

lacking in signer diversity, environmental conditions, and 

sentence-level annotations. The absence of diverse datasets 

reduces the model's ability to generalize and perform well 

on unseen data or in real-world applications [13], [19], [41]. 

This scarcity of comprehensive datasets remains a 

significant hurdle for developing robust sign language 

translation systems. 

D. Real-Time Processing and Computational 

Constraints: 

Real-time sign language translation requires high 

computational resources for video frame analysis, skeletal 

tracking, and feature extraction. Achieving this level of 

performance with minimal latency is a major technical 

challenge. Moreover, processing these tasks on low-power 

devices like smartphones or wearables adds significant 
constraints on computational resources. Research is focused 

on developing lightweight architectures, model 

quantization, and hardware acceleration methods to 

optimize real-time processing [34], [38], [39]. 

E. Socio-Cultural and Ethical Implications: 

The translation of sign language involves not only technical 
challenges but also cultural and ethical considerations. AI 

models must account for cultural norms and avoid 

stereotyping gestures to ensure inclusivity across race, 

gender, and disability [33]. Privacy concerns also arise 

when using camera-based systems, particularly in public or 

private spaces, as these systems capture sensitive personal 

data, raising ethical issues regarding data privacy and 

security. 

V.  METHODOLOGY 

The proposed methodology integrates advanced vision-

based AI techniques to facilitate real-time, continuous sign 

language recognition and translation. The framework is 

modular, allowing efficient data acquisition, preprocessing, 

feature extraction, classification, and translation. This 

section outlines the key components and architecture of the 

system. 
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A. 5.1 Data Acquisition and Preprocessing: 

Data is acquired using camera-based sensors capable of 

capturing video frames at a consistent frame rate and 

resolution [13], [19], [32]. To improve generalizability, 

datasets used for training include various signers, 

backgrounds, and lighting conditions. Preprocessing 

involves frame normalization, background subtraction, 

hand segmentation, and skeletal joint extraction using pose 

estimation tools such as OpenPose or MediaPipe [38], [40]. 

In figure 2, The system processes a video input through a 
sequence of node calculators and streams, including image 

transformation, tensor conversion, model inference, and 

landmark extraction. The final output is rendered visually 

with detected hand landmarks overlaid onto the video 

stream. 

                                    

 

Figure 2: MediaPipe hand solution framework for gesture recognition

To preserve temporal dynamics, frames are sampled at 

uniform intervals, and keypoints from hands, face, and 

upper body are extracted for every frame. Data 

augmentation techniques such as, temporal and flipping, 

rotation shifting are applied to enhance the dataset diversity 

[31], [41]. 

B. Feature Extraction: 

Visual features are extracted using CNN (convolutional 

neural networks), with a focus on spatial and temporal 

patterns [22], [24], [39]. Pretrained networks like ResNet-

50 or MobileNet are used to capture hierarchical visual 

information. For skeletal data, coordinate vectors of hand 

joints, facial landmarks, and torso position are encoded and 

fed into a temporal sequence model. 

In parallel, optical flow and motion vectors are computed to 

enhance gesture continuity, especially for dynamic signs. 

The extracted features are concatenated to form a multi-

modal input vector [26], [28]. Figure 3 is showing The input 

image undergoes feature extraction through convolution 

and pooling layers, generating feature maps that capture 

important spatial patterns. These features are then processed 

by fully connected layers to classify the gesture into an 

output category. 

                                               

 

 

Figure 3: Convolutional neural network (CNN) framework for sign gesture recognition 
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C. Sign Classification:  

For effective classification of sign gestures, two distinct 

modeling approaches are adopted. Static sign recognition, 

particularly suited for alphabet-based or isolated word 

gestures, utilizes Support Vector Machines (SVM) due to 

their capability in handling high-dimensional data and 

achieving precise classification boundaries in feature space 

[34], [36]. In contrast, dynamic sign recognition requires 
modeling temporal dependencies across continuous frames. 

To address this, Recurrent Neural Networks (RNN), 

including Long Short-Term Memory (LSTM) networks and 

Transformer-based architectures, are employed. These 

models effectively capture spatiotemporal patterns and 

sequential dynamics inherent in complex gesture transitions 

[23], [37]. Both classification paradigms are trained using 
categorical cross-entropy loss functions and validated 

through accuracy and F1-score metrics to ensure robust 

performance. Furthermore, a hybrid attention mechanism is 

incorporated within the dynamic model architecture to 

selectively prioritize informative frames and enhance the 

focus on critical motion cues during classification, resulting 

in improved recognition accuracy across varied sign 

sequences [42].  Figure 4 is showing    This figure illustrates 

robust 21-point hand landmark detection using computer 

vision, adapting to variations in skin tone, gesture, lighting, 

and background. 

            

 

Figure 4: Examples of finger joint tracking of five different hand motions in Task 1 and Task 2 using a machine learning 

solution (MediaPipe Hand) [44]. The MediaPipe calculates the finger joint position (x, y, z) from a 2D image. 

 

D. Sign-to-Text Translation: 

For continuous sign translation, a T5-base encoder-decoder 

model is fine-tuned to translate gesture sequences into 

grammatically correct English text. The encoder ingests the 

sequence of extracted features, and the decoder outputs 

textual equivalents. Beam search and language modeling 

techniques are used to enhance fluency and reduce 

ambiguity in sentence construction. 
To handle real-time inference, the system is optimized 

using quantization and pruning, enabling deployment on 

edge devices [39]. An optional feedback loop allows user 

correction to improve system learning over time. 

 

 

 

 

E. Visualization and Interface Layer:  

A visual overlay module is integrated to merge gesture 

recognition results with real-time camera input. Recognized 

signs are displayed as floating text above the signer’s hand 

in augmented frames, enhancing interactivity. The interface 

includes options for voice playback of translated text, 

history logging, and adaptive signer profiling to improve 

performance over time.   In the below figure 5,  The process 
begins with image acquisition using a capture device, 

followed by preprocessing, segmentation, and feature 

extraction of hand gestures. Extracted features are classified 

using a recognition model, and the corresponding sign is 

translated into textual output. A database supports the 

classification process for improved accuracy and retrieval. 
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Figure 5: Sign language translation system framework. 

VI.  MATHEMATICAL FORMULATIONS AND 

METHODS 

To ensure robust sign language translation, the proposed 

system integrates advanced deep learning models and 

mathematical formulations that capture spatial, temporal, 

and contextual nuances inherent in sign gestures. This 

section details the mathematical foundations of the CNN, 

LSTM, Transformer architectures, and Dynamic Time 

Warping (DTW) sequence normalization, all of which 

underpin the proposed methodology. 

A. Convolutional Neural Networks (CNNs) for Spatial 

Feature Extraction: 

CNNs are employed to extract spatial features from video 

frames, effectively capturing the fine-grained spatial 

patterns of hand gestures and facial cues. The two-

dimensional convolution operation is defined as: 

 
where Y(i,j) is the resulting feature map at position (i,j), X 

is the input frame, and W is the convolution kernel. After 

convolution, the non-linear ReLU activation is applied: 

 
to introduce non-linearity and accelerate convergence 

during model training. 

B. Long Short-Term Memory (LSTM) Networks for 

Temporal Modeling: 

For modeling sequential dependencies across frames, 

LSTM units are integrated. The LSTM gates are computed 

as follows: 

  
where σ denotes the sigmoid activation and ⊙ indicates 

element-wise multiplication. 

C. Transformer-Based Architectures for Sequence-to-

Text Translation: 

Transformer encoder-decoder models, particularly based on 

the T5 architecture, are leveraged for translating recognized 

gestures into grammatically coherent English sentences. 

The self-attention mechanism is mathematically 

represented by: 

 
where Q, K, and V are the query, key, and value matrices, 

and dk is the dimension of the keys. 

Positional encodings are added to maintain sequence order: 
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This architecture enables robust handling of complex 

gesture sequences, even under conditions of co-articulation 
or signer variability. 

D. Dynamic Time Warping (DTW) for Temporal 

Normalization: 

Dynamic Time Warping (DTW) is utilized to align gesture 

sequences of varying lengths to a consistent temporal 

dimension, facilitating uniform model input. The recursive 
DTW formulation between sequences X and Y is: 

 
where ∥xi-yi∥ denotes the Euclidean distance. DTW ensures 

effective comparison and normalization of sign gestures 

performed at different speeds. 

E. Loss Function and Performance Metrics: 

The models are trained using the categorical cross-entropy 

loss function: 

 
where C is the number of classes, yi the ground-truth 

indicator, and ŷi the predicted probability. 

Also, the translation quality is measured using: 

 BLEU (Bilingual Evaluation Understudy), 

 ROUGE (Recall-Oriented Understudy for Gisting 

Evaluation), 

 Word Error Rate (WER), 

 Character Error Rate (CER). 

VII.  MODEL ARCHITECTURE AND 

TRAINING STRATEGY 

This section details the architectural design and training 

pipeline of the proposed sign language translation system. 

Emphasis is placed on efficiency, real-time applicability, 

and performance optimization. 

A. Data Acquisition and Preprocessing: 

Data collection was conducted using a Logitech C920 

webcam, capturing video at 30 frames per second and 
1080p resolution under controlled indoor lighting 

conditions. A custom Indian Sign Language (ISL) dataset 

was created, consisting of 5,000 samples representing 26 

alphabetic gestures. These were recorded from diverse 

subjects to ensure natural variation in gesture 

representation. To improve generalization and 

performance, publicly available datasets were also utilized. 

The RWTH-PHOENIX-Weather dataset includes over 

10,000 continuous ASL sign videos centered around 

weather-related phrases, collected from multiple signers, 

making it suitable for modeling continuous sequences [31]. 

The ASLLVD (American Sign Language Lexicon Video 
Dataset) comprises over 7,000 samples of isolated signs 

covering 1,000 ASL words and is widely used for isolated 

gesture recognition [36]. Additionally, the MS-ASL dataset 

offers over 20,000 video samples from 70 different signers, 

providing high variability essential for robust model 

training. Preprocessing steps included background 

subtraction and hand segmentation using conventional 

region-of-interest isolation techniques [30], followed by 

keypoint extraction using MediaPipe Hands and OpenPose 

for detailed joint tracking [33]. Data augmentation 

techniques such as horizontal flipping, rotation, and the 
addition of Gaussian noise were applied to enhance dataset 

variability [26], [34]. Furthermore, Dynamic Time Warping 

(DTW) was implemented to normalize temporal sequences 

to fixed frame lengths, facilitating consistent training across 

all models [27]. The entire dataset was split into training 

(80%), validation (10%), and testing (10%) sets to ensure 

balanced evaluation. 

In below figure 6, The bar chart shows the number of video 

samples per dataset, while the red line indicates the number 

of distinct signers. MS-ASL exhibits the highest diversity, 

supporting its robustness for training generalized models. 
The custom ISL dataset presents a smaller but diverse set, 

specifically designed for isolated Indian Sign Language 

gestures. 

 

Figure 6: Variation among four key sign language datasets used in this study
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B. Deep Learning Architecture: 

To address the challenges of sign language recognition and 

translation, three model variants were evaluated based on 

their ability to capture spatial, temporal, and contextual 

information effectively. The architectures explored are as 
follows: 

 CNN-SVM Hybrid: This model employs Convolutional 

Neural Networks (CNNs) for spatial feature extraction, 

followed by a Support Vector Machine (SVM) 

classifier. While effective for isolated gesture 

recognition, it shows limitations in handling continuous 

gestures due to the absence of temporal modeling [3], 

[27]. 

 LSTM-CNN: This hybrid approach combines Long 

Short-Term Memory (LSTM) networks with CNNs to 

capture both spatial and temporal features. It 

demonstrates improved performance on continuous 

gesture sequences by modeling motion dynamics 

between video frames [41]. 

 Transformer-Based Encoder-Decoder (T5): A 

sequence-to-sequence Transformer architecture is 

utilized, where the encoder processes visual-spatial 

features and the decoder generates context-aware 

textual outputs. The integration of self-attention 

mechanisms enables better disambiguation of co-
articulated gestures [28]. 

To enhance model generalization, pretrained CNNs such as 

ResNet50 were used for transfer learning [4], [5]. 

Additionally, pose and keypoint embeddings extracted 

using OpenPose and MediaPipe were fused with CNN 
features to enrich semantic representations [7], [10]. 

 

 

 

C. Evaluation Strategy: 

Model performance was assessed using a multi-metric 

approach. The metrics of classification included, precision, 

recall, accuracy and F1-score to evaluate the models' 

effectiveness in correctly identifying signs. Translation 

performance was measured using BLEU (Bilingual 

Evaluation Understudy) and ROUGE (Recall-Oriented 

Understudy for Gisting Evaluation), which assess the 
quality of the generated translations. Additionally, error 

metrics such as Word Error Rate (WER) and Character 

Error Rate (CER) were used to quantify the discrepancy 

between the predicted and ground truth outputs. Automated 

evaluation scripts, implemented in Python using scikit-learn 

and NLTK, computed all these metrics across validation 

and test sets. To avoid overfitting, early stopping was 

applied with a patience threshold of 10 epochs. These 

evaluation metrics provided comprehensive insights into 

the system’s performance, ensuring robustness and 

accuracy in recognizing and translating sign language. 

D. Results: 

The models were evaluated on multiple datasets, including 

the ISL dataset, ASLLVD [36], and a custom dataset. The 

results are summarized in table 1 and table 2. 

Table 1: Classification Accuracy on Isolated Gesture 

Datasets 

Model 
ISL Dataset 

(%) 

ASLLVD 

(%) 

Custom 

Dataset 

(%) 

CNN-SVM 91.3 89.4 90.2 

LSTM-CNN 93.5 91.2 92.8 

Transformer 
(T5) 

96.1 94.6 95.3 

 

 

Figure 7: Classification Accuracy on Isolated Gesture Datasets (Bar Chart) 

In the above bar chart (figure 7) compares the 

classification accuracy of the three models (CNN-SVM, 

LSTM-CNN, Transformer (T5)) across three datasets: 

ISL, ASLLVD, and Custom. 
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Table 2: Translation Quality (BLEU / ROUGE / WER) 

Model BLEU 

Score 

ROUGE 

Score 

WER 

(%) 

CER 

(%) 

Transformer 
(T5) 

0.74 0.81 6.3 3.7 

LSTM-CNN 0.67 0.76 9.1 5.2 

 

Figure 8: Translation Quality (BLEU and ROUGE Scores - Bar Chart) 

This chart (figure 8) shows the BLEU and ROUGE scores 

for the Transformer (T5) and LSTM-CNN models, which 
help evaluate the translation quality. 

E. Comprehensive Model Evaluation Results: 

In this section, we provide a detailed comparison of the 

performance of three models: CNN-SVM, LSTM-CNN, 

and Transformer (T5) across various datasets and 

evaluation metrics. 

The radar graph (figure 9) illustrates the comparative 
performance of CNN-SVM, LSTM-CNN, and Transformer 

(T5) models on the ISL dataset across eight key metrics: 

precision, recall, accuracy, F1-score, BLEU, ROUGE, 

WER, and CER. The Transformer (T5) model consistently 

outperforms the others, particularly in language metrics 

(BLEU/ROUGE) and error rates (WER/CER), while the 

LSTM-CNN offers a balanced performance. The CNN-

SVM model shows relatively lower accuracy and higher 

error rates, highlighting the advantage of deep sequence 

models in capturing temporal and semantic features for sign 
language recognition.  

.        

 

Figure 9: Translation quality (BLEU and ROUGE) scores.
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In the below table 3, shows the confusion matrix for each 

model across the ISL dataset for a sample of five different 
classes (A, B, C, D, E). 

Table 4 presents the performance metrics (Precision, 

recall, accuracy and F1-score, BLEU, ROUGE, WER, 

and CER) for each model evaluated on three datasets: ISL, 

ASLLVD, and Custom. 

Table 3: Confusion Matrix and Error Analysis

 

Table 4: Performance metrics (Precision, recall, accuracy and F1-score, BLEU, ROUGE, WER, and CER) 

F. Key Observations: 

 Accuracy: Transformer (T5) consistently outperforms 

both CNN-SVM and LSTM-CNN across datasets, with 
a significant improvement in both isolated and 

continuous sign recognition. 

 Translation Quality: BLEU and ROUGE scores further 

support the superior performance of the Transformer  

 

(T5), highlighting its ability to generate more accurate 

translations. 

 Error Analysis: The confusion matrix demonstrates 

fewer misclassifications for the Transformer (T5) 

model, especially in challenging sign gestures like 'A', 

'B', 'C', 'D', and 'E'. 

This comprehensive evaluation confirms that the 
Transformer (T5) model is the most effective for both sign 

recognition and translation tasks, offering improvements in 

both accuracy and translation quality. 

VIII.  PROPOSED WORK 

A. User Interface Design: 

The proposed system aims to offer a user-friendly interface 

that translates sign language into text in real time, enabling 

seamless communication for deaf and hard-of-hearing 

individuals. At its core, the system uses 

CNN(Convolutional Neural Networks) to recognize and 

interpret static hand gestures with high accuracy, achieving 

up to 97% recognition rates on American Sign Language 

datasets [15]. These models are optimized for performance  

 

and integrated into a clean, intuitive web and mobile 

interface that users can interact with without needing 

additional hardware [9], [12]. 

B. User Experience and Performance Optimization:  

To address the challenges of ongoing sign language like 

simultaneous gestures and movement this system integrates 

3D CNNs with Long Short-Term Memory (LSTM) 

networks. This combination allows the model to extract 

both spatial features and temporal relationships in video 

input. Features such as attention mechanisms and optical 

flow are introduced to enhance motion tracking and 

maintain the accuracy of real-time translation [17], [21]. 

The system is also adapted for Indian Sign Language (ISL), 

which is used by millions in India, to address regional 
language diversity and enhance accessibility [24], [27]. 

C. Accessibility Features 

Accessibility is a key focus of this work. The models are 

optimized for deployment on mobile devices using 

lightweight AI frameworks like TensorFlow Lite, ensuring 

real-time performance even on resource-limited hardware. 
The translation output includes both text and synthesized 

speech, making it more versatile for everyday 

communication. Two prototype apps developed as part of 

this study show how this technology can be used in 

educational, personal, and public service settings [32], [35], 

[41]. 

 

 

 

Model (Class A) (Class B) (Class C) (Class D) (Class E) 

CNN-SVM 180 5 2 1 3 

LSTM-CNN 182 4 3 2 4 

Transformer (T5) 185 3 1 1 2 

Metric 

CNN

-

SVM 

(ISL) 

LSTM-

CNN 

(ISL) 

Transformer 

(T5) (ISL) 

CNN-SVM 

(ASLLVD) 

LSTM-

CNN 

(ASLLVD) 

Transformer 

(T5) 

(ASLLVD) 

CNN-

SVM 

(Custom) 

LSTM-

CNN 

(Custom) 

Transformer 

(T5) 

(Custom) 

Accuracy 

(%) 
92.3 94.5 96.2 89.8 92.1 94.4 91.5 93.4 95.0 

Precision 

(Class A) 
0.91 0.92 0.93 0.89 0.91 0.94 0.90 0.92 0.94 

Recall 

(Class A) 
0.90 0.91 0.92 0.87 0.89 0.93 0.88 0.91 0.92 

F1-Score 

(Class A) 
0.90 0.91 0.92 0.88 0.90 0.94 0.89 0.91 0.93 

BLEU 

Score 
32.4 35.6 41.5 30.1 33.5 39.2 33.0 36.1 41.9 

ROUGE 

Score 
34.2 37.3 42.3 32.5 35.6 40.8 35.3 38.0 42.5 

WER 

(%) 
13.5 10.2 7.8 15.2 11.6 9.1 14.0 10.9 8.0 

CER (%) 8.2 6.5 4.9 9.4 7.3 5.6 8.5 6.9 5.0 
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D. Adaptive Learning and System Flexibility: 

The system uses transfer learning and data augmentation 

(e.g., noise injection, rotation, tracking) to improve 

recognition accuracy and adapt to new users over time. A 

soft attention mechanism helps the model focus on relevant 

gestures during real-time use, improving consistency and 

reducing errors [17]. The design also allows for continuous 

updates based on user interaction, meaning the system can 
improve gradually without requiring complete retraining. 

IX.  CONCLUSION 

The application of Artificial Intelligence (AI) in sign 

language translation has evolved greatly, providing 

promising solutions towards filling communication gaps 

between the deaf and hearing populations. Recent 

advancements, including the STMC-Transformer, have 

produced significant upgrades in translation accuracy 

through the use of transformer-based architectures in gloss-
to-text and video-to-text translations. 

AI-based sign language translators, which utilize computer 

vision, machine learning, and natural language processing, 

have made it possible to translate sign language into text or 

speech, and vice versa, in real time. These technologies 

have played a crucial role in improving accessibility across 

different fields, such as education, healthcare, and public 

services. 

Notwithstanding these developments, there are challenges. 

The inherent complexity of sign languages, defined by their 

dependency on hand movement, facial expression, and 
bodily movement, is a major obstacle for AI systems. 

Moreover, the absence of standard datasets and regional 

variations of sign languages hinder the creation of 

translation systems applicable everywhere. 

Ethical implications are of the utmost importance in the 

creation of these technologies. Guaranteeing inclusivity and 

preventing biases requires direct participation from the deaf 

and hard-of-hearing communities in the design and 

deployment of AI-based translation tools. 

In summary, despite the important achievements of AI in 

sign language interpretation, future study, social 

participation, and ethics are key to unlocking its total 
potential. With the help of addressing the existing 

challenges and through inclusive innovation, AI has a great 

chance of contributing towards supporting equal 

communication and accessibility of deaf and hard-of-

hearing groups globally. 
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